- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Blomer, Valentin (4)
-
Milićević, Djordje (2)
-
Fouvry, Étienne (1)
-
Harcos, Gergely (1)
-
Jana, Subhajit (1)
-
Kowalski, Emmanuel (1)
-
Maga, Péter (1)
-
Michel, Philippe (1)
-
Nelson, Paul D. (1)
-
Radziwiłł, Maksym (1)
-
Sawin, Will (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blomer, Valentin; Jana, Subhajit; Nelson, Paul D. (, Duke Mathematical Journal)
-
Blomer, Valentin; Harcos, Gergely; Maga, Péter; Milićević, Djordje (, Journal de Mathématiques Pures et Appliquées)
-
Blomer, Valentin; Fouvry, Étienne; Kowalski, Emmanuel; Michel, Philippe; Milićević, Djordje; Sawin, Will (, Memoirs of the American Mathematical Society)For a fairly general family of L L -functions, we survey the known consequences of the existence of asymptotic formulas with power-saving error term for the (twisted) first and second moments of the central values in the family. We then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime q q , and prove that it satisfies such formulas. We derive arithmetic consequences: a positive proportion of central values L ( f ⊗ χ , 1 / 2 ) L(f\otimes \chi ,1/2) are non-zero, and indeed bounded from below; there exist many characters χ \chi for which the central L L -value is very large; the probability of a large analytic rank decays exponentially fast. We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.more » « less
An official website of the United States government
